A cura di Eugenio Amitrano

Contenuto dell'articolo:

1.	Introduzione		•		•	•		•	2
2.	Descrizione	-	•		•	•	•		2
3.	Dimostrazione	-	•		•	•	•		2
4.	Esempi .								3
5.	Casi particolari								5
6.	Conclusioni								5

1. Introduzione-

Il presente articolo vuole fornire un metodo empirico per determinare una delle soluzioni di grado n.

2. Descrizione

Data una generica equazione algebrica di grado n:

(1)
$$x^{n} = c_{1} \cdot x^{n-1} + c_{2} \cdot x^{n-2} + \dots + c_{n}$$

Sia $(S_k)_{\forall k \in N_0}$ una serie è definita nel seguente modo:

(2)
$$\begin{cases} S_k = \sum_{i=1}^n c_i \cdot S_{k-i} & \forall k \ge n \\ S_k = 1 & \forall k < n \end{cases}$$

È possibile affermare che una soluzione dell'equazione è data dalla seguente relazione:

$$(3) x = \lim_{k} \frac{S_k}{S_{k-1}}$$

3. Dimostrazione

$$Hp: \qquad x = \lim_{k} \frac{S_k}{S_{k-1}}$$

Th:
$$x^n = c_1 \cdot x^{n-1} + c_2 \cdot x^{n-2} + ... + c_n$$

A partire dall'Hp, è facile verificare la validità delle seguenti due relazioni:

a)
$$x = \lim_{k} \frac{S_k}{S_{k-1}} = \lim_{n} \frac{S_{k-t}}{S_{k-t-1}} \quad \forall t \in N_0$$

b)
$$\lim_{k} \frac{S_k}{S_{k-t}} = x^t \qquad \forall t \in N_0$$

Partiamo dall'Hp:

$$x = \lim_{k} \frac{S_{k}}{S_{k-1}} = \lim_{k} \frac{\sum_{i=1}^{n} c_{i} \cdot S_{k-i}}{S_{k-1}} = \lim_{k} \frac{c_{1} \cdot S_{k-1} + c_{2} \cdot S_{k-2} + \dots + c_{n} \cdot S_{k-n}}{S_{k-1}} =$$

$$= c_{1} \cdot \lim_{k} \frac{S_{k-1}}{S_{k-1}} + c_{2} \cdot \lim_{k} \frac{S_{k-2}}{S_{k-1}} + \dots + c_{n} \cdot \lim_{k} \frac{S_{k-n}}{S_{k-1}} = c_{1} + c_{2} \cdot \frac{1}{x} + \dots + c_{n} \cdot \frac{1}{x^{n-1}}$$

$$x = c_{1} + c_{2} \cdot \frac{1}{x} + \dots + c_{n} \cdot \frac{1}{x^{n-1}} \quad \text{da cui} \quad x^{n} = c_{1} \cdot x^{n-1} + c_{2} \cdot x^{n-2} + \dots + c_{n}$$
Quindi

Come Volevasi Dimostrare.

4. Esempi

• <u>Esempio 1:</u>

Equazione:
$$x^2 = x + 1$$

Sviluppo della serie
$$\begin{cases} S_k = S_{k-1} + S_{k-2} & \forall k \ge n \\ S_k = 1 & \forall k < n \end{cases}$$

<i>k</i>	S_k	S_k/S_{k-1}
0	1	
1	1	1
2	2	2
3	3	1.5
4	5	1.666666667
•••	•••	•••
25	121393	1.618033989
26	196418	1.618033989
27	317811	1.618033989
28	514229	1.618033989
29	832040	1.618033989
•••	•••	•••

$$x = \lim_{k} \frac{S_k}{S_{k-1}} \approx 1,618033989$$

• <u>Esempio 2:</u>

Equazione:
$$x^2 = -3x - 2$$

Sviluppo della serie
$$\begin{cases} S_k = -3 \cdot S_{k-1} - 2 \cdot S_{k-2} & \forall \ k \ge n \\ S_k = 1 & \forall \ k < n \end{cases}$$

K	S_k	S_k/S_{k-1}
0	1	
1	1	1
2	-5	-5
3	13	-2.6
4	-29	-2.230769231
•••	•••	•••
25	67108861	-2.000000089
26	-134217725	-2.000000045
27	268435453	-2.000000022
28	-536870909	-2.000000011
29	1073741821	-2.000000006
•••	•••	•••

$$x = \lim_{k} \frac{S_k}{S_{k-1}} \approx -2$$

• *Esempio 3*:

Equazione:
$$x^3 = x^2 + x + 1$$

Sviluppo della serie
$$\begin{cases} S_k = S_{k-1} + S_{k-2} + S_{k-3} & \forall k \ge 3 \\ S_k = 1 & \forall k < 3 \end{cases}$$

<i>k</i>	S_k	S_k/S_{k-1}		
0	1			
1	1	1		
2	1	1		
3	3	3		
4	5	1.666666667		
•••	•••	•••		
25	1800281	1.839286754		
26	3311233	1.839286756		
27	6090307	1.839286755		
28	11201821	1.839286755		
29	20603361	1.839286755		
•••	•••	•••		

$$x = \lim_{k} \frac{S_k}{S_{k-1}} \approx 1,839286755$$

5. Casi particolari

Nel caso in cui la soluzione ricercata dovesse risultare complessa, possiamo notare che il $\lim_{k} \frac{S_k}{S_{k-1}}$ non è regolare.

• Esempio:

Equazione:
$$x^2 = -2x - 3$$

Sviluppo della serie
$$\begin{cases} S_k = -2 \cdot S_{k-1} - 3 \cdot S_{k-2} & \forall \ k \ge n \\ S_k = 1 & \forall \ k < n \end{cases}$$

k	S_k	S_k/S_{k-1}
0	1	
1	1	1
2	-5	-5
3	7	-1.4
4	1	0.142857143
•••	•••	•••
25	-1525679	-5.253697473
26	2180155	-1.428973591
27	216727	0.099408987
28	-6973919	-32.17835803
29	13297657	-1.906769637
•••	•••	•••

$$x = \lim_{k} \frac{S_k}{S_{k-1}} \ (\underline{non \ regolare})$$

6. Conclusioni

Il metodo presentato in questo articolo vuole fornire un punto di vista alternativo per le equazioni di grado n, mettendo in risalto una loro caratteristica non convenzionale.