Sezione Aurea e generalizzazione delle proprietà di conservazione decimale.

A cura di Eugenio Amitrano

Contenuto dell'articolo:

1. Introduzione .	•			•				2
2. Sezione Aurea .		•	•					2
3. Proprietà di conserv	azione	decin	nale					3
4. Generalizzazione de	elle pro	prietà	di con	iserva	zione o	decima	ıle.	3
5. Esempi								4
6 Conclusioni								Δ

1. Introduzione

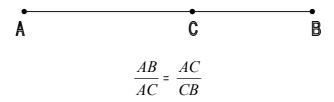
Il presente articolo descrive la natura di alcune proprietà legate al Numero Aureo e la determinazione di altri numeri aventi le stesse caratteristiche.

2. Sezione Aurea

La Sezione Aurea, rappresenta uno dei più famosi numeri della storia. Possiede peculiari proprietà matematiche, delle quali descriveremo in seguito quelle che interessano la natura dell'articolo.

Vediamo cos'è la Sezione Aurea.

Preso un segmento AB, lo dividiamo in un punto C tale che il rapporto tra l'intero segmento AB e la parte più lunga AC, sia uguale al rapporto tra quest'ultima e la parte più corta CB:



Tale rapporto è definito Sezione Aurea che indichiamo con Φ .

$$\frac{AB}{AC} = \frac{AC}{CB} = \Phi$$

$$AB \cdot CB = AC^2$$

sostituiamo
$$CB = (AB - AC)$$

$$AB \cdot (AB - AC) = AC^2$$

$$AB^2 - AB \cdot AC - AC^2 = 0$$

dividiamo tutto per AC^2

$$\left(\frac{AB}{AC}\right)^2 - \frac{AB}{AC} - 1 = 0$$

sostituiamo
$$\frac{AB}{AC} = \Phi$$

$$\Phi^{2} - \Phi - 1 = 0$$

$$\Phi = \frac{1 + \sqrt{5}}{2} = 1,6180339...$$

Eugenio Amitrano 2

3. Proprietà di conservazione decimale

• Prima proprietà

Il quadrato della Sezione Aurea conserva la sua parte decimale:

$$\Phi^2 - \Phi - 1 = 0 \qquad \Phi^2 = 1 + \Phi$$

$$\Phi = 1,6180339...$$
 $\Phi^2 = 2,6180339...$

• Seconda proprietà

Il reciproco della Sezione Aurea conserva la sua parte decimale:

$$\Phi^2 - \Phi - 1 = 0$$
 $\Phi^2 = 1 + \Phi$ $\Phi = \frac{1 + \Phi}{\Phi}$ $\Phi = 1 + \frac{1}{\Phi}$ $\frac{1}{\Phi} = \Phi - 1$

$$\Phi = 1,6180339...$$
 $\frac{1}{\Phi} = 0,6180339...$

4. Generalizzazione delle proprietà di conservazione decimale

Le due proprietà sopra citate, possono valere singolarmente anche per altri numeri:

• Prima proprietà generale

Il quadrato di ogni numero $n = \frac{1 + \sqrt{4k+1}}{2} \quad \forall k \in N_0$ conserva la sua parte decimale:

$$n^{2} = \left(\frac{1+\sqrt{4k+1}}{2}\right)^{2} = \frac{1+4k+1+2\sqrt{4k+1}}{4} = \frac{4k}{4} + \frac{2+2\sqrt{4k+1}}{4} = k + \frac{1+\sqrt{4k+1}}{2} = k + n$$

• Seconda proprietà generale

Il quadrato di ogni numero $n = \frac{k + \sqrt{k^2 + 4}}{2}$ $\forall k \in N_0$ conserva la sua parte decimale:

$$\frac{1}{n} = \frac{2}{\sqrt{k^2 + 4} + k} = \frac{2 \cdot \left(\sqrt{k^2 + 4} - k\right)}{4} = \frac{\sqrt{k^2 + 4} - k}{2} = \frac{k + \sqrt{k^2 + 4} - 2k}{2} = \frac{k + \sqrt{k^2 + 4}}{2} - k$$

Sezione Aurea e generalizzazione delle proprietà di conservazione decimale.

5. Esempi

Per entrambe le proprietà si riportano gli esempi con i primi 15 numeri:

$$n = \frac{1 + \sqrt{4k + 1}}{2} \quad \forall \ k \in N_0$$

k	n	n2
1	1.618033988750	2.618033988750
2	2.0000000000000	4.0000000000000
3	2.302775637732	5.302775637732
4	2.561552812809	6.561552812809
5	2.791287847478	7.791287847478
6	3.0000000000000	9.0000000000000
7	3.192582403567	10.192582403567
8	3.372281323269	11.372281323269
9	3.541381265149	12.541381265149
10	3.701562118716	13.701562118716
11	3.854101966250	14.854101966250
12	4.0000000000000	16.0000000000000
13	4.140054944640	17.140054944640
14	4.274917217635	18.274917217635
15	4.405124837953	19.405124837953

$$n = \frac{k + \sqrt{k^2 + 4}}{2} \quad \forall \ k \in N_0$$

k	n	1/n
1	1.618033988750	0.618033988750
2	2.414213562373	0.414213562373
3	3.302775637732	0.302775637732
4	4.236067977500	0.236067977500
5	5.192582403567	0.192582403567
6	6.162277660168	0.162277660168
7	7.140054944640	0.140054944640
8	8.123105625618	0.123105625618
9	9.109772228646	0.109772228646
10	10.099019513593	0.099019513593
11	11.090169943750	0.090169943749
12	12.082762530298	0.082762530298
13	13.076473218983	0.076473218983
14	14.071067811866	0.071067811865
15	15.066372975211	0.066372975211

6. Conclusioni

In entrambi i casi, per k = 1, risulta $n = \Phi$.

Eugenio Amitrano 4